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Restrições - Satisfação ou Otimização 

• Em certos (muitos) casos o que se pretende determinar não é uma 

solução qualquer, mas sim a melhor solução. 

• Neste caso, o problema é mais adequadamente descrito como um 

problema de otimização com restrições.  

• Um problema de otimização com restrições pode ser especificado por 

um tuplo < V, D, R, F > em que 

– V: é o conjunto de variáveis usadas na modelação do 
problema 

– D: é o domínio(s) em que as variáveis de V podem tomar 
valores 

– R: é o conjunto de restrições que afectam as variáveis V 

– F: é uma função das soluções para um domínio ordenado 
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Otimização com Restrições - Exemplos 

• Planeamento de testes em circuitos digitais 

– Teste com menos entradas especificadas 

• Gestão de Tráfego em Redes 

– Tráfego com menor custo 

– Máximo tráfego com um dado custo 

• Gestão da Produção 

– Plano com maior lucro 

– Máxima produção com os recursos existentes 

• Sequenciação de Tarefas (Scheduling) 

– Solução com o fim mais cedo  

– Ocupação máxima das máquinas existentes 
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Otimização com Restrições - Exemplos 

• Geração de Horários 

– Solução com menos furos 

– Solução com menos teóricas de tarde 

 

• Caixeiro Viajante 

– Solução com menor distância percorrida 

 

• “Colocação” ou “preenchimento” 

– Colocação do máximo número de peças 
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Restrições + Otimização - Caixeiro Viajante 

• Com as definições anteriores e denotando por dij a distância 

efetivamente percorrida entre os nós i e j,  

– Definição da distância percorrida 

|Vi – Vj| = 1  cij < M 

|Vi – Vj| = 1  dij = cij  

|Vi – Vj|  1  dij = 0 

– Otimização 
min Σi Σj dij 
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Restrições – Complexidade 

• Os problemas de interesse de satisfação de restrições são 

geralmente NP – completos:  

– Descoberta de solução: complexidade exponencial (pior caso) 

– Verificação de solução: complexidade polinomial 

• Já os problemas otimização de restrições são geralmente NP – 

difíceis: 

– Descoberta de solução: complexidade exponencial (pior caso) 

– Verificação de solução: complexidade exponencial  

• Analogia com SAT 

 
Problema SAT 
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Optimisation 

Although Constraint Logic Programming is somehow focused in 
constraint satisfaction (closer to a “logical” view), constraint 
optimisation is usually a very important goal ― often, “the” goal that 
a user expects from an application. 

 

Example: 

For all the scheduling problems that were considered, one could aim 
at optimising some goal, namely 

• To obtain the earliest end time for all the tasks, with limited 
resources; or 

• The solution that requires less resources to complete at a 
certain due time. 



7 

Optimisation 

Optimisation has been extensively studied for the case of linear 
constraints over the rational/real numbers.   

For these problems fast algorithms exist, based not only in the 
Simplex algorithm and all its variants, but also in interior point 
methods. Software packages are also available, incorporating such 
algorithms (e.g. CPLEX). 

In the context of finite domains, it is important to consider 
situations where 

• Variables may take values on a finite set of (integer) values; 

• The constraints to satisfy are not linear; 

• The optimisation function is not linear. 
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Optimisation 

The computation of optimal solutions may be performed by many 
algorithms taking either 

• a constructive approach; or 

• a repairing approach. 

In the constructive approach, the optimisation process may be 
regarded as the progressive instantiation of the variables that model 
the problem. The goal is to obtain the best complete solution, i.e. one 
that can be proved that is better than any other. 

In the repairing approach, a complete solution is iteratively being 
changed into some of its “neighbours”. Again the goal is to reach an 
optimal solution, but these methods do not usually guarantee the 
optima. 
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Optimisation 

The constructive approach to optimisation uses in general 
two types of techniques 

• Search 

• Relaxation 

These two concepts are ilustrated in the following BIP 
(Binary Integer Programming) problem 

Max Z = 9x1 + 5x2 + 6x3 + 4x4 
Subj. 6x1 + 3x2 + 5x3 + 2x4  10  

          -  x3  + 2x4  10  

 -x1          + x3         0 

      -  x2         + x4    0  
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Optimisation 

Since the variables are binary, X1 = 0 / 1, the problem may 
be decomposed in two separate problems. 

 Search is required to find the overall best solution within 
the two smaller problems. 

Max 5 x2 +6 x3 + 4x4 
Sbj 3x2+ 5x3+ 2x4  10  

  - x3+ 2x4  1  

   x3       0 

    - x2      +  x4   0  

Max 9+5 x2 +6 x3 + 4x4 
Sbj 3x2+ 5x3+ 2x4  4  

 -  x3 + 2x4  1  

   x3       1 

    - x2      +  x4   0  

Max Z = 9x1 + 5x2 + 6x3 + 4x4 
Subj. 6x1 + 3x2 + 5x3 + 2x4  10  

          -  x3  + 2x4  10  

 -x1          + x3         0 

      -  x2         + x4    0  
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Optimisation 

In general, relaxation aims at simplifying a problem 
(making it less constrained) such that  

• the simplified problem is easier to solve 

• the solutions found are “informative”.  

In this context, informative means that it might be 
possible to “infer” properties of the solutions of the initial 
problem, based on the solutions of the simplified problem. 

Since the integers are a subset of the rationals (or of the 
reals), a common relaxation with linear constraints consists 
of dropping the integrality constraint on the variables 
domains, and use techniques appicable to the real numbers. 
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Optimisation 

In this case, the relaxation of variables 0/1 consists of 
simply considering them in the interval [0..1].  

The two subproblems may now be handled as linear 
programming problems, possibly by some of the fast tools 
available, providing the following optima 

Zmax = 9   w/(0,1,0,1) 

Max Z = 5x2+6x3+4x4 
Sbj 3x2+ 5x3+ 2x4  10  

  - x3+ 2x4  1  

    x3      0 

    - x2    +  x4    0  

Zmax=16.2 w/(1,.8,0,.8) 

Max Z = 9+5x2+6x3+4x4 
Sbj 3x2+ 5x3+ 2x4  4  

  - x3+ 2x4  1  

    x3      1 

    - x2    +  x4    0  

Search looks then more promising within the 
subproblem for which   X1 =1   
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Optimisation 

The work done so far has shown that: 

Problem X1 = 0 has an exact (integer) solution. Hence 
problems should only be exploited if they have the 
potential to improve this value, that may be considered the 
best solution (for the whole problem) so far. 

Problem X1 = 1 has a relaxed solution of 16.2. Since there 
is here the potential to find an integer solution better 
than the best so far, this is the problem to search next. 

Zmax= 16.2 w/(1,.8,0,.8) 

Max Z = 9 + 5x2 + 6x3 + 4x4 
Sbj 3x2+ 5x3+ 2x4  4  

 -  x3 +  x4  1  

   x3       1 

    - x2      +  x4   0  
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Optimisation 

Again decomposing the problem through variable X2: 

Zmax= 13.8 (1,0,.8,0) 

Max Z= 9 + 6x3 + 4x4 
Sbj 5x3+ 2x4  4  

   - x3 +  x4  1  

     x3       0 

          x4  0  

Zmax= 16 c/(1,1,0,.5) 

Max Z= 14 + 6x3 + 4x4 
Sbj 5x3+ 2x4  1  

   - x3 +  x4  1  

     x3       1 

          x4   1  

Zmax= 16.2 c/(1,.8,0,.8) 

Max Z = 9 + 5x2 + 6x3 + 4x4 
Sbj 3x2+ 5x3+ 2x4  4  

 - x3 + x4   1  

   x3       1 

    - x2       + x4   0  
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Optimisation 

None of the solutions is integer. For showing best potential 
we continue with problem (exploiting X3=0  and X3=1): 

Zmax= 16 (1,1,0,.5) 

Max Z = 14 + 4x4 
Sbj  2x4  1  

      x4  1  

      0   0 

      x4  1  

Zmax= - (1,1,1,-) 

Max Z = 20 + 4x4 
Sbj 2x4  -4  

     x4  2  

     1   1 

     x4  1  

Zmax= 16  (1,1,0,.5) 

Max 14 +6 x3 + 4x4 
Sbj 5x3+ 2x4   1  

   - x3 +  x4  1  

     x3       1 

           x4  1  
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Optimisation 

The problem that resulted from X3 = 1 eventually led to 
the dissatisfaction of one of the constraints.  

 

Max Z = 20 + 4x4 
Sbj 2x4  -4  

     x4  2  

     1   1 

     x4  1  

This problem can be then simply pruned from the search, 
and not considered any longer. 
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Optimisation 

We may then proceed with the other problem, where three 
variables are already instantiated (X1=1, X2=1 e X3=0) : 

Zmax= 14 (1,1,0,0) 

Sbj   0  1  

      0  1  

      0  0 

      0  1  

Zmax= 16(1,1,0,.5) 

Max Z = 14+ 4x4 
Sbj  2x4  1  

      x4  1  

      0   0 

      x4  1  

Zmax= - (1,1,0,1) 

Sbj   2  1  

      1  1  

      0  0 

      1  1  
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Optimisation 

Analysing the solution found, X1=1 , X2=1 , X3=0 e X4 = 0: 

  (1,1,0,0) 

Max 14 
Sbj   0  1  

      0  1  

      0  0 

      0  1  
We notice that 

• It is a solution to the original problem (all variables 
take integer 0/1 values). 

• Its optimum is better than the potential of any of the  
subproblems not yet exploited (e.g. X1=1,X2=0 with 
maximum 13.8). 

• These may then be safely discarded. 
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Optimisation 

These techniques are the basis of the branch & bound 
algorithm that is the algorithm usually adopted in a pure 
constructive approach to optimisation. 

The algorithm exploits the following ideas 

• A problem may be divided in two (or more) problems, 
with exclusively disjunct solutions (Branch). 

• The potential of each subproblem is evaluated by some 
appropriate (relaxation) technique (Bound).  

• The subproblems that do not have a better potential 
than the best solution found so far, are abandoned. 
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Optimisation 

During this process, the algorithm has to exploit a 
(potentially large) number of problems.  

In the worst case, problems resulting from all possible 
instantiations of the n variables would have to be 
examined, a search space of order O(dn). 

A key issue that must then be considered, to make the 
algorithm efficient, is the computation as exact as possible 
of the following bounds, for the unexplored problems 

• Their potential (upper bounds in Max problems) 

• A guaranteed value of a solution of the problem (lower 
bounds), enabling cuts to be made even before a 
solution is found. 
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Optimisation 

Other techniques may improve the algorithm, namely 

• Fixing of variables 

x3  0        x3 = 0  

• Elimination of useless redundant constraints 

x4  1 

• Generation of useful redundant constraints (cutting-planes) .  

• Example: From 6x1 + 3x2 + 5x3 + 2x4  10  “infer” 

x1 + x3  1 

x1 + x2 + x4  2 

 

Some of these techniques are automatically guaranteed by constraint 
propagation 
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Optimisation 

These techniques may be used in finite domains 
constraints (integer programming), with the obvious 
adaptations 

• Decomposition is often carried out at some threshold 
value, usually dividing the domain in two equal “parts”.  

• If X::[0..8] then X  4 or X > 4 

• If X::[0,1,2,3,4,8] then X  2 or X > 2 

• Useful cutting planes are much more difficult to find. 

• Overcome problems with interval arithmetic to 
compute bounds 
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Optimisation 

The bounds are computed with interval arithmetic, which 
raises many problems regarding precision, namely if the 
“same” variables are considered independently. 

Ex 1:     | ?- X in -2..2, Z #= X*X. 
   X in -2..2, Z in 0..4 ?  

However, the dependencies between the variables are not 
always recognised by the system. 

Ex 2:     | ?- X in -2..2, Y #= X, Z #= X*Y. 
   X in -2..2, Y in -2..2, Z in -4..4 ? 

Even worse (!) 

Ex 3:     | ?- X in -2..2, Y #= X, Z #= X-Y. 
   X in -2..2, Y in -2..2, Z in -4..4 ? 
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Optimisation 

Expressions on the same variables, equivalent in “normal” 
arithmetic, may even produce different results. 

Ex 1:     | ?- X in -2..2, Y in -2..2, Z #= X*(X+Y). 
   X in -2..2, 

   Y in -2..2, 

   Z in -8..8. 

 

Ex 2:     | ?- X in -2..2, Y in -2..2, Z #= X*X+X*Y. 
   X in -2..2, 

   Y in -2..2, 

   Z in -4..8. 
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Optimisation 

Other Topics 

Hybrid Solvers CPLEX+CLP (ECLiPSe) 

Local Search 

Hybridization: Constructive + Repairing 

    Construcion of “good” solutions 

    Repairing these solutions (improve bound!) 

 Both Satisfaction and Optimization 



26 

Optimisation in SICStus 
 

• clpfd library provides minimize(?Goal, ?C) (and 

maximize/2), which finds the solution of Goal that 

minimizes (maximizes) C (with branch & bound). 

?- domain([X,Y], 0,6), 2*X+Y #>= 9, Cost#=3*X+2*Y, 

minimize(labeling([],[X,Y]),Cost). 

X = 4,   Y = 1,  Cost = 14 

• A minimize(Cost) option could be used in labeling/2 instead. E.g. 

labeling([minimize(Cost)], [X,Y]). 

• It can also be used in conjunction with time_out/2 option to obtain 

best solution found in some time limit. E.g. 

labeling([maximize(X),time_out(9999,Flag)], Vars) 

 


